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1. INTRODUCTION

The classic problem in signal processing is to identify a low strength signal in a noisy
background. Even more difficult problems are to identify several signals in the noisy back-
ground, to determine the direction of the sources, and to track one or more of these multiple
sources. In the next section we will give an overview of the techniques that we have devel-
oped for nonlinear signal identification. In the third section we will provide the details. In
the fourth section we will give an overview of our nonlinear tracking methods, and in the

I fifth section we will give the details of the design of an array suitable for use with broadband
signals. In the sixth section we will present the details of our nonlinear tracking algorithm
for following a maneuvering vehicle.

Classical, linear thcory has bece uacd uxLensively in solving these problems. However,
if the signals have a broad frequency spectrum with no readily identifiable characteristics,

I standard spectral methods are inadequate. In Phase I, we have built upon some results of
nonlinear dynamics to develop nonlinear algorithms to solve these problems, namely:

I * classify sources of multiple signals in a noisy environment;

a determine the source direction if the receiver is an array;

• perform tracking of a maneuvering vehicle.

Imagine there are several sources of signals present in a noisy environment, and it is
desired to classify the sources. Or suppose that you have been busy listening in a noisy
environment and a new signal source suddenly appears which you wish to quickly identify.
These are classic problems for which we developed a new generalized method in our Phase-I
effort. Our method, which is based upon our research in nonlinear dynamics, specifically
addresses signals that have a broad frequency spectrum with no easily identifiable features
so that classical identification methods are ineffective. Our method is, to the best of our
knowledge, completely new, and is based upon standard results in nonlinear dynamics and
classical probability theory. It is particularly well suited to signals associated with low-
dimensional chaotic dynamical systems, but it is by no means restricted to them.

We now give a brief overview of the procedures and assumptions involved in performing
the classification. We assume that samples of signals have been previously acquired and are
available in a library. The signal representing the noise background may be obtained while
one is listening for other, more interesting signals, and it is treated the same as any other
signal. Certain geometric structures (probability densities and their characteristic functions)
associated with each signal then are constructed and a comparison is made with the same
structure created from the newly received signal. The way in which this comparison is made
can have a significant effect on performance. So far we have relied on either a standard X2
statistic for comparing two probability densities, or upon a simpler square of the difference
of the densities summed over all signal strengths.

The geometric structures are defined so that the structure from the sum of two signals
factorizes into the product of structures, one from each signal. We then compare with the
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corresponding product of structures from our iibrary and decide whether we have a correct
identification. This factorization property is crucial as it permits a large library of signals to
be compared with the incoming signal in essentially real time. The result is a determination
that the received signal has a component that was made by a source of a unique type
such as, for example, a particular helicopter model or a particular submarine model. For
spectrally wide-band chaotic signals it is usually not possible to make such an identification
by comparing either signals or their spectra.

One can imagine using this kind of processing in different ways. One scenario involves
listening at a particular site with a nearly stationary (in time) noise background. Suddenly
a new noise is present, and it is desired to identify the source. In this case we need only
identify the new signal as we can include the observed background noise in our library. The
searching of the library is then very rapid and an identification may be quickly performed.
In other situatioiis one may be confronted with a new environment and wish to identify all
of the sources present.

In some situations the receiver is an array, and the signals from the individual elements
can be separately phased (independent time lags) before combining the signals. In this situ-
ation it is possible to identify the direction of a particular source by varying the phase of the
array. Because the signal is broadband, we are not looking for a null to determine the direc-
tion, but rather changes in the constructed geometric structures as the phases of the array
elements are changed. To the best of our knowledge, this is a new concept. The densities con-
structed from noise-like signals were observed to have relatively little structure as the phase
is changed, but the densities from other signals showed significant variation as a function of
the array phase. It is also possible to monitor changes in the distance of the source as the
amplitude of the received signal varies. A new algorithm that we have developed determines
the velocity of the source by a nonlinear "doppler shift" calculation. This determination is
sensitive to the background noise; consequently, its practical implementation will have to be
delayed until the nonlinear signal-processing algorithms are refined.

In conjunction with the development of our nonlinear identification algorithms, we have
also derived a nonlinear tracking algorithm. It also turns out to be suitable for tracking
maneuvering vehicles in a conventional signal-processing environment.

In Phase I we performed the following tasks:

We constructed twenty signals, including several types of broadband noise, outputs of
chaotic electronic circuits, and samples of time series generated by systems of ordinary
differential equations with chaotic solutions. Samples of the signals were placed in a
"library." Additional signals from the same systems were generated and constitute
the "test" set. The signals in the test set were not identical to any in the library,
but they were from the same dynamical systems. In addition, we forced some of
the noise signals to have the same spectrum as some of the chaotic signals. This
was accomplished by Fourier transforming the signal and randomizing the phases of
the Fourier components and then inverting the Fourier transform. This insures that
standard spectral-identification methods could not separate the sources.
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Two signals from the test set were added together with randomly selected amplitudes

to form a simulated received signal. We then attempted to identify both the amplitudes
and the type of signals by comparing certain geometric structures constructed from the
signal and from the library. Provided the amplitudes of the test signals were not too
different., we were able to identify both signals in all cases. The range of amplitudes
permitted depended upon the similarity of the signals, with a factor of roughly ten
being a limit for the modest amount of processing that we did. We believe that as the
algorithms are refined, substantial improvements in the range of amplitudes for which

signals can be soparated will be possible.

e We also combined three test signals together for a few examples and were able to
classify the components.

* We next considered an example where the receiver was a inuiti-component array. The
incoming signals from the receivers in the array were added with a phase difference
which was chosen to select a particular direction. Because the signals are broadband,
there is no 'nll" as a function of the relative phases of the array elements. However,
the constructed densities have a strong dependence on the phase, which can therefore
serve both as a directioo identifier and as an additional classification mechanism. In
examples of arrays that were typical of ones that could be deployed in the ocean,
we were able to determine the direction and identify the source of signals that were
20db weaker than other signals with similar spectral characteristics with only a modest
amount of processing.

The techniques that we developed are new, and there are a wide variety of possible
refinements. Because the processing is nonlinear, there are more variations available than
for conventional linear signal processing, even when we restrict the investigation to the types
of algorithms that we propose. There are iio real differences in the principles involved in
the various implementations, but there are many different ways to optimize the p)robability
of correct classification. Unfortunately it is very difficult to prove general theorems about
what is optimum for nonlinear systems. Thus we expect that, for the next few years at least,
the non-linear signal processing community will have to rely to a large extent on empirical
evidence.

I 2. OVERVIEW OF OUR SIGNAL CLASSIFICATION METHOD

WNVe now discuss some of the important variables and some of the freedom available in
the details of our algorithms. Usually our signal is a time series from a single detector.
In nonlinear dynamics we are often interested in quantities that might have been observed
if more detectors were used. In order to get some additional information, we construct
additional surrogate signals. There is a certain arbitrariness in this procedure which leads to
a wealth of simple variations in processing algorithms. For example, the most common way
of constructing a second signal is to start with the original signal, S(t), and construct another
signal, Si(t) S(I + T) where T is a time delay. The two signals, S(t) and Si(t) can be
used to construct a two-climnenisional phase space. Other signals can be constructed by using
other time lags, such as S-.2(t) S(t + 2T). For dynamical systems with low dimensional
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I attractors, it is possible to construct it phase space that has geometric properties related to

the actual phase-space geometry. This technique of phase-space reconstruction has been used
extensively to obtain information about dynamical systems. It underlies our procedures, but
we have found that it can be extended in several ways for purposes of signal recognition.

In most nonlinear dyvualnics applications, one considers a fixed time delay, T, and for
those applications nothing is gained by varying the time delay, except perhaps one choice

works slightly better than another. For our applications it is useful to consider several

Stime delays simultaneously. Of course, this is not a new concept in linear signal processing
since the auto-correlation function considers all time delays. However, this idea has not
previously been used for examining phase-space density functions. WVe found that making

S separate coimiparisons for several different time lags improved the decision-making algorithm.
As one examlple. an alternative way of constructing a second signal is to consider the signal

= "t=S(t) + S(t + T). Although this is an apparently trivial change, it turns out to be a
crucial ingredient when the receiver is an array, and it provides a significant improvement in
our classification algorithm for single receivers. The density constructed from such a signal
combination is a slice through a two-dimensional density constructed from .51 and S2, but
it usually has more structure than the density constructed from .51 alone and is hence more
useful.

I The point of the above two paragraphs is that there are a variety of simple modifications
that can be made to our basic method that will improve the results. As we have indicated
above, there are several variations in the numbers and types of phase-space densities that
can be used for identification. The principal ones that we have tested are as follows:

I * Two-dimensional phase space with a single, fixed delay time;

9 Two-dimensional phase space with one oi- two additional delay times;

* One-dimensional phase space using S,,,,(t) and many delay times;

I * Three-dimensional samnpled phase space with a fixed delay time.

NMost of our tests have been performed using a two-dimensional phase space with a fixed

delay time, T, and it is within that framework that we declare Phase I to be a success.
In order to improve the discrimination, we first considered a second time lag and that was
sufficient to remove some accidental ambiguities. It is possible, and in principle desirable, to
work in a three-dimensional or higher phase space. Unfortunately, the computational time
increases dramatically. Rather than reconstruct the entire three-dimensional density. it is
possible to sample randomly the density (actually the Fourier transform of the density) at

many points. This allows one to enjoy many of the benefits of a full reconstruction without
the full computational effort. We performed some limited testing using this procedure inSPhase I and it appears to be successful. If several signals are present, this technique might
provide a better signal to noise ratio for the same computational effort. We have not yet made

comparisons with the use of two-dimensional densities in terms of efficiency and accuracy.
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\,e also did some calculations with one-dimensional densities using the signal S,.m(t)
S(t) + S(t + T) described above. The disadvantages of a density constructed from just S(t)
is that it is difficult to obtain good discrimination because of the relatively few features
available for discrimination, and that drawback is related to the relatively little information
contained in that density. However. adding a time-lagged signal increases the structure
and considering many different time lags greatly increases the identification capability. A
significant advantagc of one-dimensional densities is that relatively little comI)uter resources
are required. \Ve have tested this concept on a few signals. At the very least it is successful
enough to serve as a quick "rejection filter," thus reducing the number of cases requiring
more extensive examination.

As we mentioned above. these combinations and their generalizations also play an im-
portant role when the receiver is an array. In the plane-waves approximation, the best one
can hope to do is to translate the phase information into a bearing angle. The p)roblem
is thus to design an arraY whose beam pattern has little or no frequency dependence. In
particular, we must make sure that the main lobe width, peak response, sidelobe level, and
distance between the main lobe and the sidelobe plateau (which takes the place, in our
approach, of the grating sidelobes which appeal generically in the case of single frequency
arrays) all remain constant across the design frequency band. To do this, we use the Poisson
summation formula and the method of stationary phase to relate beam-pattern properties
to array characteristics. Using this relation, we then translate all the listed beam-pattern
requirements into practical requirements on sensor location and array amplitude shading.
WVe end up with a beamforining approach that is significantly more efficient than a classical
uniformly spaced array. Specifically. while uniform spacing produces an array in which the
total number of elements would be proportional to the ratio of the highest to lowest design
frequencies, the method we have used allows one to achieve all the beam-pattern objectivos
with a total number of elements that grows like the logarithm of the ratio of highest to lowest
frequencies.

In summary, in Phase I we have developed new, nonlinear algorithms for detecting one
or more spectrally broadband signals in a noisy background. The primary goal of verifying
that signals can be identifled/classified by the proposed technique was achieved. In addition,
the fact that there are several variations of constructing densities that have been successful
in identification seem to enhance greatly the ideas' usefulness. The algorithms use a new
and innovative apl)roach that can be used in near real time. We have successfully used the
algorithms to classify sources and. with an array of receivers, we can identify the direction
as well as decrease the contribution of other sources.

3. SIGNAL CLASSIFICATION

The crucial ingredients for a correct classification of signals are their probability densi-
ties. First, we explain two ways of constructing the densities, and then we will show how
to identify the components of a signal made up of several pieces. Examples will be given
showing how the method works. and some important refinements will be presented.

The first step is to normalize all signals. The mean is removed and the root-mean-
squared signed is normalized to unity. IL ;., :ssential to have a Uniform normaiization since



we have no a priori knowledge of the relative amplitudes of the components of a signal. The
normalization and mean may be useful themselves, such as for determining the change in
distance of a moving vehicle, but we don't use them directly for most signal identification.

The simplest density is just a histogram of the amplitude of the incoming slg(al. If S(t)
is sampled and has the values Si, S_,, S3... for a total of N values, we just count the numlber
of tilmes S is between x anld x + d(X and call that N - p(x)daL. Formally,

!-lil T I6(x - S(t))dt (1)

where (.r) is the delta function. This density usually doesn't have enough structure to be
a useful identifier, although with a. modification to be described below it can be a useful
tool. A second density. now two dinienisional, can be constructed by introducing a second
coordinate S(t + 7'). Then

p(x,y) -- jira 6(.r - S(t))6(y - S(t + T)),lt. (2)
T -.- ,' )j

The practical application of these formulae requires replacing the delta function by a
function ef finite wvidth. We have chosen to use

1 -_I
0(f ,; 2_ (:3)

Other substitutions are possible.

The interpretation of p(.ry) was discussed in the previous section. A third coordinate
can be introduced and a three-dimensional density defined. The procedure could, in principle,
be continued to whatever dimension one wished. There are several reasons for truncating at
a low dimension:

"* Computational requirements become prohibitive in high dimensions (greater than three)

"* The length of the signal may not be long enough to justify many dimensions, i.e..
regions of phase space will be empty or inadequately sampled.

"* For low-dimensional dvnamical systems the higher dimensional probability densities
are certainties in terms of lower dimensional ones.

"* A density in a low dimension is a projection of a density in a higher dimension. The low-
dimensional density may contain sufficient features to serve as a classifier for practical
purposes.

It is possible to sample a high dimmiension without computing the entire density. This
procedure will be discussed below. For dynhiinical systeinis with low-diniiensional attractors,

6



strange or otherwise. t here are theoremis that relate the number of time lags needed to the

dimensionality of the system. Consequently, if only low-dimiensional dynamicald systems were

tHe sources of the signal, we need consider 0111v lower dimnensionial p)robabili ty distribuitios

Noise tends to be very iih dimuemsiomial, but it, usually has little structure anyway so not

much is lost by projecting, it onito at lower (initmiesional space.

WeC have elected to (10 oulr (ame a tsi ostl y ;% a t%,-( d ii ictsional Space. As wec have

notedl, tile various time liags alre hparamneters of' the density fuiet iomis. To work wvith only one

t~i nie lag! 7'. is eq liiva lent to conisiderintg, the aut o-correlat ion fu nct ionl

C(T') =< S(t)S'(t + 7') > (1

at on lv one vaýluec of T. 01' Course one valune of C(T) p)rovides \ervI,% little useful informlationl.

For examniple. theý deteriu i natonl of thle spectrumn requires a wide rangie of .- allie s of 7T ( in prinl-

ci ple all 7T values. III pract ice a lim ited range). Thus eveni when we restrict our calculations"

to two (dimenisionis we can construict a contliluum11 of demisit ics depend~ing on 7'. 1ii pracm iceI
we have sampled a ramige of T valuesO.S

The niext step ini the p)rocedure is to understand the relatijonship between a densityv of a
sig-nal amid the (leiility cef its coinponlents. To this end we deli e the char-acteristic funict ion

Of the den1sity which is *Lust the Fourier traiisforin,

This has the property that If S'( ) = Si (t) + S'2( t) and

IIT

pi(AC = IkS (t)dIt()

e j~iks2 .)(tOdt (7)

then ,ý(k) = ý (k)fr 2 (k). This is a well-known property of characteristic functions []and
just requires that .5i and S,2 are generaited by independent. stationary processes.

WVe emphasize that this relationship is crucial to the possibility of signal classification if
multiple signals are present. If three signals are present the iresult is

ý(k) = ý1(k)/ 2 (k)I3 3 (k).(S

This expression would b~e correct for gemieral Signals Si an1d b2 Ut since we normalize

sigynals, thle amlplitude. n ii ist (eiter dlie Icla tiomishi P]etw-enm the F), in Eq. S. Suppose



S(t) = aS1 (0 + 3S'2(t) (9)

where all signals have zero in eani and arc properly normalized. Then ci2 + 32 i.and thle
relatijonshi ip is actunally

,7)(A-) =~ j~(ak)fr2(,3k) i)

Sitnce A arnd .5 aren't kinowtn. this requires that thyb ifud as- part of the pro(ceduire~.
T.he relatiosisltip is th- satne hii higher thlimintsioits excep~t tha~t A7 is tiow% a vector.

The densi ty cal It c cotnst ruct ed ei t. er by' cot st riict ing /)(x)r or 7)( k fromn the ab~ove
(lehttitiolis:. It is usually more ellicietit to calculaite ý(A-) oi, a inesh and then initerpolate
to get ýoiu.k) rather thiall calculate 7)(k.) dire.ctly. N'ote that p(x ) will always valnish for .r
oultside sýotie region. since s4ignals can't have aritrarily large at plitiids.

Onc-e thle appropriate denisities5 are cutistnritced. the next step is to test hvpot lwq's about
whch signals noWc tip S. lhe procedure that we- have usedl thitis far to p~rovidec a tigire of
merit is to test thle (ju1alititv

Error I FjNA) - jfq(ok)j3'(_3k) 12 (

or the correspond intg Fourier t rantsform as a futnct ion of x for all signals,.51' and S2 . for a
range of values of a. If one of the coinponetits is ktnown then one need on ly search for a
secondl sigtial. lThis is the case if a new sional suddenti appears. The background signal
Up to that timel( is S, anld th lnew signal is S,. Since we have been listening to S1 , we
canl cotnst ruct the detisi ties lor it attd only candlidates for S-2 need to be tested. This also
illust rates t hat one of thle signals. S, hit this case. can be arbitrary noise. If there are three

sign aIs hpromelt. Al iinktowtt. onte has to test. matny more hypotheses.

W\e have foundt that at special class of orte-diimensiottal detnsities. to be described below,
canl be used as a rejectjion filter. This is ait important point since they require very little
computttat ional resources.

\Ve now present examples to ihllist rate the m-rethod. In Figures 1 and 2, several examples
of signals are shown. Two of the signals are from electronic circuits (provided by NRL)
and the rest are s,, nt hetic signals genierated fi orn ordinary differential equations with chaotic
attractot's. Figutres :3 and( 4 show the power' spectrum of the same signals.

The basic idea of the scheme we propose for classifying signals is to construct probability
dhensities for signtals of interest and to make comparisons by pattern matching with the
corresponding density for a signal that one wishies to identify. There are an infinite number
of possible densities. butt it is sufficient, to compare only a few. Before proceeding to the
technical details we give a pictorial exa1mple. In Figure 1 there are three density plots. The
first, (a), is the denisi ty conist ruct ed fron ta signal to be classified and the ot her two. (b)

8



and (c) , are proposed candidates taken hrornt at library. Inl this case it. is easy to see that, (c)
mlatches (a) and( that ( b) does not. A nhiiiieriCal calculation Of the differences con1firmIIs this.

71 particular density hlas a snpeinterp~retation. Iistepoaltyt at aniasnremnent

ofi a signal, S~ t ) ,at tim e, t, an d a subsequent measurement. a tilne T later will have the value is
.r andl Y respect ively. Or- more properly, P( x, y )dxdy is the probability for the signal S(t) to
be inl the rainge x to .r + dx and the signal S(I + 7T) to be in thc range y to yI + dy .p(x. y)
is the vertical axis labheled densi tv. The densities wvill! of course, be dIifferent. for different
values of T. Thle second miiiu ten t of thle probabl~iIitv densi ty. p(x . y). is thle a iitocorrel atiohl
funiction, i C..(iT) =< xI >.

Suich a simple com11parison I (oes not alIway's providle a conicl usivye test, part icula rly wheni
mu It i pie signals an1d( noise are p i'(n5Ch In.li that case one c'an conmpa re the patI t emis at several
different vallies of I' or const.ruct ot her related (lenitiels. There are many ýinlfinit e) denlsities
that canl be constructed and it, in1vt he f!ý_ierillined Whlichi are more1- Useful for a particular
a pp i cat ionI .

I hiis examrple illustrates sonii of lhe llexibiiitv available in our algorithmns for si¶2,lai
dlisc'riminhationi. and it also s('rves to Mltst rate some of the(- problems that neeVd to be solved hin
OR&1( to develop a ietwvIl svstenii Iliie is 1lexi bilit V inl t l1e ch~iCe Of' dimen-s'ionl of probability
deiisit v. there is t lequestm lollf seletm loll o tlieti ehlg. A' and whether to use mla iiv dIi lh'rerll

valuesof 7I' and. if so. Ihow nianx. Thiere is lie possibility of' using anl a rray of receivers to
en h11a nce recogn it ion . sin ce thle sou rces havxe a broad frequency spectrutm. thle queist ion a rises
cis to t) h e iu-,st lIfeyt ie "myxa of deployintg an array and wHat are the tradeoiL. One also nee s
all an tola t e d(ecisioni makin g process for comparing (lehsities and some way to nieasure
conlidence. All of the suggest ions for enihancing performance were tested successfully inl
Phbase 1. althlouglh no inuformiat ion about Optimitizinug performnailice was Obtained.

In order to test ourt.e I ictlod xvlCHmlnnIti ple signals are ptresent, we form cominbiat ions of
two signals to give at thiird.

S'(t) =aP(t) + bQ(t) (12)

The signals P and Q are to be identified ats well as their relative amiplitutdes. Since we,
measure S'(t) we kniow its level so that we knowv the value Of the surt of the squares of aI and~
b. Fot' the part icutlar examp[le that wxe show hecre, a =.OIS andl b =0.ST.

WVe have beeni Using aI N2 statistic ats at liguire of' nieri t, whlich is a slight modification of
Eq. 11 [5] and thle appropriate fuint ion or thle deiisi tics of thle signals is comhparedl. Ini this
case we const ructe4 I a two-dimnensional I(eilsi t by using a signal and a tiime-lagged signal for
the two cotpnelloiits.

Thle criiterion that we usc is exact in th liemi rdt of an infinitely' long signal. but. in the
pt'esent case a relatively short signal was used. This mneanls that even wh~en thle Correct signals
wit~h the correct amplitudes are comnparedl there wvill be some r'esidutal statistical error. Inl
the lower righ dt graph of Figure 6. 2is shown versus the relative strength parameter. n.
Trhere are. two cuirves that, ale neariv identical and a thir one that has a, larger \`. One( of

9



the two lower curves corresponds to the exact comparison and gives us an estimate of the
statistical uncertainty that places a lower limit on X2 . The second curve was computed by

taking a different sample of signals 4 and 6 and comparing various combinations of them
with the densities of the original signal. We see that the value of a is clearly about 0.5,
which is correct.

The residual error is due to the inherent lack of statistics. The upper curve corresponds
to the hypothesis that one of the signals was correct and the other incorrect. Note that
even in this case our algorithm correctlv identifies the amount of the signal that was the
right candidate. We then considered two difFerent signals. neither of which corresponded
to the original choice. namely signals I phis 5 (see lower left of Figure 6). In this case .X 2

was relatively flat and well above the levels shown on the graph, thus affirming that neither
signal was present in the signal to be identified.

The amount of data, used is of course important. The computatio'aI effort is propor-
tional to the length of the time the signal is observed, and there is the logistic problein of
not being able to collect an infinite amioumIt of' data in a finite time. For the examples shown.
we sampled about ten times per oscillation and included a total of 10,000 points. For typical
machinery oscillations of 1,000 rpm, this is about a minute's worth of data.

Depending upon the types of signals of interest, one may get by with less total samples.
\Ve tried many different co1binations of signals. even including noise in the signal to be
identified, and all of our results were coinparable to the example presented above. We were

even able to recognize that a signal was iiade up of two similar signals so that if there are
two sources of the same signal we could recognize that fact.

It is important to be able to identify a weak signal combined with a strong signal.
The limitations on this are not known at present and will undoubtedly be dependent upon
refinements of the algorithm. Qualitatively we have no problem separating signals with a

I ratio of energies of ten to one. Sometimes we can resolve power levels of a hundred to one.
and we expect further improvement will be possible.

SWe have done some limited testing with a signal made up of three signals. In the first
examiple one signal was broad-band noise (signal 7) and the two other were chaotic signals.
The energy in each signal was the same. The correct combination was easily selected out.

We then tried a combination with the energies in the ratio of 9 to 4 to 1, with the 9 being
the broad-band noise. There did not seem to be any problem identifying the two signals
even in the presence of noise. There was one example of an alternative signal giving as good

a statistic as one of the correct signals. In order to resolve this discrepancy we performed
a separ, test which completely resolved the uncertainty. It is encouraging that almost
all incorrect combinations were easily rejected in the two-dimensional phase space, as this

means that only a few candidates might have to be further processed, as we did in the above
example in order to get better rejection of incorrect hypotheses.

In order to give the reader a visual im ilpression of the densities we illustrate with a
combination of two signals, such that the weak signal has 40% of the amplitude of the first
signal. %VWe then consider three candidate signals for the weak signal. Figure 7a shows the
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density p(x.,y) of the incoiIIing composite signal with r = S(t) and (I ( = (t+4). The density
obtiined by taking the convolution of tic two correct individual signal densities is shown in
Figure 71). Note that density in Figure 7b is smoother than Figure 7a. This is due to the
limited statistics. If the signals were infinitely long, the two densities would be ioentical.
Incorrect hypotheses for the weak signal combined with a correct guess for the strong signal
are shown in Figures 7c and 7d. Note that visually we can distinguish them, and a nun~erical
test also concludes which is the correct density.

\We now turn to a promising method of performing some classification via one-dimensional
dlensities. Define a new signial. 1(1) = (t) + S(, + T). Construct the density associated
with this signal.

/,(x: T) = -1 6(x - R(t))dt. (1:3)

As usual we normalize I?(t) such that, rm.s(R 2 ) = 1. The factor involved in the normal-
ization is just the correlation function, that is, ms (f(Rt 2 ) = 2(1 + C(T)) before normalizing
ft but after normalizing S. Tlie density p(.L; T) has considerable structure and the structure
changes as T changes. In Figure S. we present examples for one particular signal. The
density is shown on vertical axis and the signal strengtli, ;r, is on the horizontal axis. The
value of T is shown at the top of each graph. For reference, a typical oscillation time scale
is around ten units. The densities for a second signal are shown in Figure 9. Note that they
are quite distinct, particularly if several different T values are examined. The density with
T = 0 corresponds to the usual density. Note that it is relatively featureless. One way of
constructing noise with a frequency sp)ectrum comparable to a signal is to Fourier transform
the signal and make the phases random with each one independent of the others. Then
Fourier translorm back and the resulting signal will have the same spectrum. The result
of such an operation is shown in Figure 10 a-f. Notice that there is no structure and no
dependence on T. Figure 10g is for S(t) = cos(t). There is no dependence of p(x) on T for
a simple sinusoidal signal.IWe have done some limited testing of comparing densities in one dimension as a function
of T. It is certainly much faster than comnuting in two dimensions and serves as an effective
rejection filter. Properly used, it mnight be possible to do all or nearly all calculations with
one-dimensional densities. One can extend the idea and define

Q(t) = S(1) + S(I + T) + 3(1 + 2T). (14)

The density associated with Q(I) has vet, a. different structure. One could also use a different
T, say Tl instead of 2T. All of these concepts need to be examined. \W\e now know that they
all work to some extent and the goa-l is to refine and optimize their use.

In order to illustrate the possibility of discrimination with one-dimensional densities, we
chose two signals and added them together with equal amplitudes. In Figure 11 the solid
line is the density of the summed signal. The dashed line is the fit obtained as usual by
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using 7)(k) = pi•(k)p)2 (k). The curves would exactly coincide if the length of the signal were
sufficiently long. The difference in the two curves provides a measure of what is the "best"

that one can do if one tries candidate signals to make up the received signal. In this case the
most stringent test was to try a signal with the same power spectrum as one of the original
signals, but with randomized Fourier phases so that it is noise. The result is shown in Figure

12. Although the fit looks good, they are to be compared with those in Figure 11. There is
clearly a di fference for all values of 7' and o011 coulI easiIV in fer the correct signal even with
this oue-dimensiounal construction.

The one-dimensional (densities are just simple projections of two-dimensional or higher
densities. However there are alternative projections that are also simple. For instance, for

the Fourier transform ill two dimensions, 7)(k), one can fix the magnitude of k and vary the
polar angle. \Ve have done some limited testing of this idea and the ability to classify seemed
comparable to the one-dimensional densities described immediately above. The reason for
considering these alternatives is that it is desirable to use a projection that has considerable
structure, and the region around k = 0 is generally pretty structureless. Ordinary projectiolls

have to use that region whereas this projection is specifically devised to avoid it. It also has

the feature that it is simple to calculIate and the interpolations required because of the
unknown signal strength are also simple.

It is possible to extend the definition comparable to R(t) or Q(t) to two dimensions.
We• have done that in a Ilinited way and the comparisons seem to work better; however, not
much testing has yet l)eerl done.

An important new tool that we have been developing is the use of an array of receivers.
\Ve use the array first to get tHie direction of a particular source and then to analyze tile

source. W'Ve made a model of' an array typical of a p)ossible underwater array. The particular
test we ran was for one hundred elements, spaced a few meters apart. The details of designing
ai api)ropriate array are presented in the next section.

Both equal spacing and logarithmic spacing were tried. Two sources a long distance
awav with an angle of -1.5 separating them were simulated. In one example we made source
A ten times as strong as B (20db separation). We were easily able to identify B with a single
two-dimensional comparison or a few one-dimensional comparisons. We could not do this
without the array. In order to demonstrate the above comments we show the results with

and without an array. Without an array it is just the addition of two signals with one signal
being ten times larger in amplitude. In Figure 13a we show the density the sum of the two
signals,

S(0) = S1 + IOS2. (13)

In Figure 1.31 we show the density obtained by the usual multiplication of 75I and 752. In
Figure 13c we show an alternative candidate for Si. Clearly it is difficult for the eve to see
the (difference between Fgure 131) and Figure 1lc. It is also numerically diflicult if only one

time lag is used. In Figure l3d we show tie density for an alternative signal for S 2. This
time we can clearly see the difference. Il' Figure 14 we show the results of using an array.

This time we are clearly able to identi iy correctly the weak signal. Note that since the signal
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is broadband, we can't use the array to select a particular frequency in a given direction as
one might do with harmonic signals. This is a very important result since we don't have to

search for pairs of signals, etc. but only need to match a single signal, as the other received
signals were greatly reduced inI strength.

4. OVERVIEW OF BROAD BAND ACOUSTIC ARRAY DESIGN

We studied the problem of localizing and tracking the source of a received underwater
acoustic signal, given that the latter is more complex than a simple C\V tone, and that it

has propagated from source to receiver throulgh a non-linear medium. The approach we had

to take is a dual one: it depends on how well one can represent the detected signal. Indeed.

if the signal produced by the source is truly chaotic, i.e. if it is has chaotic dynamics, then,
while we have an approach that can identil'y the dynamical system in question, one cannot

hope to retrieve the actual time-series of the signal with any kind of accuracy. On the other
hand, if the signal produced by the source is merely complex, i.e. if it is more complicated
than a (linearly-produced) time-harmonic tone yet has Hamiltonian dynamics or at least

non-chaotic ones, then one can indeed hope to identify a template time-series associated

to it, perhaps parametrized by some of the state variables, then estimate these parameters
along with the other state variables associated to the source.

In either case, the signal produced by the source gets convolved by the Green's function

of the medium before being measured by the receivers. Because the source is moving in timne.
and because the dependence of the Green's function on range is very much non-linear, the

received signal is quite complex in both cases. Yet one would expect that if this complexity
is well-understood and optimally used. one could infer from it the location of the source as
a function of time. In turn, it is natural to expect that this localization and tracking should

help improve the detection and estimation of the various source parameters.

In the non-chaotic case, one can try to model the template associated to the source
signal as accurately as possible: indeed, it will depend on the source coordinates (which vary
with time), on its (time-varying) velocity, and, possibly, on solne other (non-time-varying)
parameters that can distinguish one underwater source from another. Once the dynamics

of these state variables are modeled by mathematical equations (with deterministic and
stochastic components), and once the de(pendence of the received signal on these variables is

also modeled mathematically (i.e., essentially, once the medium is satisfactorily represented

and its Green's function computed), we reduce the problem to a classical optimal-filtering
problem, albeit a non-linear one. The approach we take in this case is to derive and solve
the equations for the conditional density function. This is the probability density function

of the state variables describing the problem, conditioned on the signal received. Computing
this p.d.f. is essentially the equivalent of implementing an infinite-dimensional Kalnan filter

to provide the best estimate of the state variables in this non-linear problem.

In the truly chaotic case, one cannot expect to single out an actual signal template. Yet
the approach we took to the identification problem does associate a characteristic density

function to our source, one shared by all the diverging actual signals that could be produced
by this single dynamical system that has been identified. As this density function scales

linearly with amplitude, we can also estimate the instantaneous (real) amplitude of our

13



signal. In order to develop a tracking ni.ethod in this case, the challenge is two-fold: use
plane-waves (rather than the detailed Green's function) to make the best use of what little
phase information one has, then try to refine this angle-tracking by making optimal use of
the sequence of estimates of the instantaneous real amplitude information we obtain using
the density function that characterized the signal. Our tracking approach in the chaotic
situation is thus somewhat weaker than in the previous case: instead of making optimal use
of the complete complex Green's function, we first account for all phase information using a
plain-wave approximation, then account for the varying amplitude using the real propagation
loss function (the magnitude of the Green's function).

In the next section, we describe our filtering approach in the chaotic case in more
detail, and present simulated results. \Ve then describe our approach in the non-chaotic-yet-
nonlinear case and present simulated results in that case.

5. BROAD BAND ARRAYS

As explained in the previous section, we first seek to extract all phase information from
our signal before processing it through our dynamical system identifier, followed by our

instantaneous a1m1plitude esti inator. TlIe resulting amlplitude estimate is then used along
with the phase information as the latest data for our tracking algorithm. We now describe

the individual pieces of this method.

In the plane-waves approximation, the best we can hope to do is to translate the phase
information into a bearing angle. The problem is thus to design an array whose beam
pattern has little or no frequency dependence. In particular, we must make sure that the
main lobe width, side lobe level, and distance between the main lobe and the side lobe plateau
(which takes the place, in our approach, of the grating sidelobes which appear generically
in the case of single frequency arrays), as well as the peak response., all remain constant
across the design frequency band. To do this, we use the Poisson summation formula and
the method of stationary phase to relate beam-pattern properties to array characteristics.
Using this relation, we then translate all the listed bean-pattern requirements into practical
requirements on h\droplhone location amid array amplitude shading. This approach is similar

to the one proposed bv Ishimaru in [3] [4], and differs in that, while Ishimaru et al only verified
that a particular shading function gives a good sidelobe behavior, we use the approach
to systematically derive the array requirements in order to achieve our global broadband

objectives. Our generalization of his method to the systematic broadband case here follows
the same line as our generalization of his nethiod to time-domain pulse trains ([2]).

Let us begin with some design considerations. The problem with using a classical umni-
form element spacing comes from the two facts that

in order to reduce the side lobe levels across the band, the spacing would have to be

proportional to the wavelength corresponding to the highest design frequency, while1 in order to keep the width of the main lobe constant over the design band, the length

of the array would have t.o be proportional to the wavelength corresponding to the
lowest design frequency.
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In other words, with uniform spacing, the total nui~iber of elements would be proportional

to the ratio of highest to lowest design frequencies. \Vith our design, it turns out that the

number of elements will grow like the logarithm of this ratio, hence should prove substantially
more efficient.

The main difficulty in using i neqiual spacings is that the beam pattern function for such
an array is unlikely to have it closed forin expression. This makes it difficult to relate array

beam pattern properties to array specifications (i.e. spacing and amplitude shading). That
is where the Poisson summation foruila co0111s in.

Suppose we have NV + I elements, to be placed along the x-axis at positions x, (0 <I n < N), and to b)e shaded Žby the (fre(,lieii(cy-(del)eid(lent) weights w,J(A), A\ a wavelength
within the band of interest. As a function R of a = sin (angle of the plane wave arrival)
- sin (array beam angle), the response of the array will be

N

R(a, v,) = ,(A2 T i ax,, /.\ (16)

There are many ways of extending x,, and wi,,(A) to functions of a real argument n such that

"" both functions are continuous at all the integers.

"" x is twice differentiable and strictly increasing on the interval [0. N],

"• t vanishes for n not iii ]-c. A' [ (wherc ( is a small positive number fixed once and
for all).

Choose such extensions x(n), w(n. \). \Ve can then use the Poisson summation formula on
R to get

R(a, A) / w(n, \)e 2 :ri x(n)/\ e - 2-tit7n d (17)

For simplicity, let us assume that the element spacings are increasing (with n). Mathemat-
ically. we are assuming that the derivative r' is an increasing function, i.e. that the second

derivative x"(n) > 0 for n in the interval [0, N]. Following [3] [4], let us use the method of
stationary phase to study the expression (17). This method predicts that, asymptotically,
(i.e. for A relatively small). the behavior of R for a close to 0 will be adequately described

by that term in the right hand side of (17) which corresponds to 7n = 0 (i.e. the mainlobe
is described by the m = 0-term), while the -nth grating sidelobe will be described by the
behavior of the integrals near that n = n... which gives a stationary phase in the integrand,
i.e. for which

i fi
.1'(u ) = (18)

Since x" was assumed positive..r'is st'ricHy increasing, so (18) will have at most one solution
for each 7n.
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Let us begin by examining the inaiflobe-to-sidelobe separation problem. What is the
smallest positive value of (a for which (18) has a solution. i.e. where does the first sidelobe
appear? For ci sufficiently near 0, the right hand side of (IS) is very large, outside the finite
range x'([0., N]) of .x'. As a increases, the right hand side will decrease accordingly. The first
solution thus occurs when a = M\A/X'(NV). Hence, at the lowest design frequency. where we
can and will make the reasonable assumption that the whole array is used, the first (7 = 1)
sidelobe appears when a, = (q) = Ao/x'(u), where Au is the wavelength corresponding to the
lower design frequency, and .r'(.N) is, bv hypothesis, the largest element spacing. In order
to meet our requirements, we would like to keep this main-to-sidc-lobe separation constant
across the design band. The obstacle is that- if A < Ao, (18) will have solutions with a < 0o.
The only way to remove this hurdle is to make sure that the corresponding shading weight
equals zero. for all these potential solutions. So we have to set

w (it, A\) = 0 for all n > :'-(x'(.V)A/Ao) (19)

and keep it positive otherwise. This equation has a nice interpretation: it says that at
any given frequency in the design band, elements spaced farther than x'(N)/Ao wavelengths
apart should not be used.

Let us now examine the sidelobe level p)roblem. As in [1], (17) implies that the level of
tIe IZ'h grating sidelobe is aplroxiiately

I j w(n, ,\)e"i(•x(II/A\-1'Odn[' (20)

which, by stationary phase, is itself approxiniateiy eqUal to Aw(n,,, A )2 /(ax"(m,,)). with
n,,1 = x'/-(InA/a) as in (18). That is, the level of the r•n" sidelobe is approximately

- x (7.,1) x/( 1M ) (21)

As we determined in the previous paragraph, the first (and largest) sidelobe occurs at a
A/."( N) > a 0 = Ao/x'(.N), i.e. for a in the interval [Ao/x'(N) , 2]. for which ni must
correspondingly lie in the interval :' 1 (a/2), ,'-(x'(n)A/Ao)]. For this sidelobe level to be
independent of A\, we have to require that

Iw(n, A)2 = constantý if x''(A/2) < n < x'-'(x'(N)A/2) (22)

i over all A in the design band.

Let us now turn to the mainlobe level problem. As in [1][3], the array response for a
near 0 is approximately given by the 0 '/' term in (17), namely

j - (n, A,)c 2,,VX(,L)/A di (23)

Choosing t = x(n) as a new variable as in [2], this can be rewritten asI jf o ° (1 ,\) c,,,,,/\ dt

,,,(.. . A'( -r(t)) 
(24)
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where we have made the reasonable assumnption that the array extends from 0 = x(O) to
x(N) = L0. There are several ways to make sure that this integral is independent of A, at
least for a small. One simple way is to write L(A) for the length of that Dart of the array
used at wavelengti ,\ i.e. to assume that w(n, A) vanishes exactly when n > x-r(L(A)), so
that the integral can be rewritten as

v(.-1(0r)'\a) 2•'O'/\ dt (25)

then to assume that the integrand is as spatially uniform as possible, i.e. depends only on
,\. \Ve thus assume that u'(f'-(t ), A) / '(.<-(1)) = ](,A), and there remains to determine
the functions ] and L. We do this by verifying when, with these functions, the integral is
indeed indepenident of ,\:

" ff ( 2AicL(\)/\ 1 (26)

which is indeed independent of A\ only if L(A) = Lo,\/Ao (we have already assumed that
the entire length of the array Lo is used at the lowest design wavelength Ao). and if f(A)
constant'/A. \Ve summarize these conclusions:

w(n. A) = constant'i if n < x-l (L0A/A0 ), (27)

and should vanish otherwise.

What should the overall design be in light of all this? The first halves of conditions (19)
and (27) specify the support of the shading function wv. To reconcile them, we must succeed
in construction x( a) such that

x A(O-. )o( = I ( (N ) + (28)

I Using the new variable A' = LoA/Ao, this equation becomes x- (A') = x'-'(x'(N)A'Lo).

If we now write v for x-*'(A') (so that A' becomes x(v)) then apply x' to both sides of the
equation, we obtainI-L = (N) (29)
Sdv Lo

a differential equation which is solved by .(v) = Aez'(N)v/L, in which A is a constant that
can be determined by the condition x(N) = Lo. Putting it all together, The solution is

Ir, = Loc-- N (30)

I This equation must hold at least for all n (= x-i(LoA/Ao)) that are within the interval
[A,, A•0] where A1 is the wavelength corresponding to the highest design frequency. Also note

I for future use that (30) implies that, over its range of validity. :r(x"-(d)) = Lod/x'(N).
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With formula (30) for x,,, condition (22) governing the sidelobe levels becomes

Sw(n, A\)2 = constanrt 1/Lo (31)

for all n in the range x'-'\(A/2) < n < .'_'(.x'(N)A/Ao) and all A in [A1 , A0]. It is important
to note that in order to validate the use we just made of formula (30), we must require
that that formula hold for all n in the interval [x'_'(A/2),x'- 1 (x'(N)A/Ao)] over all A\ in the
design band. Since x' is increasing, this means that (30) must hold for all n in the intervalS[/'-(AI/2), N]. As to our amplitude shading function wv, we may as well normalize it by
setting the constant in (31) equal to L0, so that w(n, A) = 1 over the interval above.

To specify w over the entire domain of interest. we turn to the last condition unaccounted
for yet, namely the second half of (27), namely that w(n, A) = constant'x'(n)/1A if n <
x- (LoA/Ao). Unfortunately, to maintain a low sidelobe level, we have already adopted the
condition w(n, A) =I for x-1,(A/2) < n < x-1 (LoA/Ao). So we will simply choose the
constant in (27) in such as way as to inakew continuous at the transition point = .r- (A/2),
i.e. we set constant' = 2, and set

1AI 9
'nA = Ax()frn< x_(32)

To obtain a complete design, we still need to specify x, for all n = 1 .... A. So far we
know that (30) must hold for all n in the intersection I of the intervals [x-1 (Lo,\A/Ao), N]
and [x'' (A•/2), N]. Therefore we still need to determine x'(N) and the values of .r, for n
outside I.

Assuming, without loss of generality, that x'(N) > Ao/2 (i.e. that the largest hy-
drophone spacing is at least as big as half the largest wavelength in the problem). our range
I is in fact the interval I= [x'-' (A, /2), N]. Thus, (30) specifies the element positions from
the widest-spaced down to the ones spaced at half the shortest design wavelength. The re-
maining elements (whose positions are yet to be specified) must therefore be spaced at least
as closely as half the wavelength at any frequency in the design band. For efficiency, it is
only natural to minimize the number of additional elements available to fill out the array,
and therefore require that they be spaced no closer than the half-minimum-wavelength. So
we set A1  0 \ L0 ,1 ,_'(_)0 (aaw, = n A.forn < X-1 ( Lo,) -) = N z/(2) °g (33)

In order that xr remain continuous, we imiust finally reconcile this last equation with equation
(30) at the intersection point of their ranges. This reduces to imposing the final additional
conditionI A / Lo(N ",'(N) ,,__L_

, N - L log( "()) (34)) ( :.,(.) ,/2 2 x'(N )

Putting all these requirements together, we end up with the following equations for
the element positions and the shading coefficients (here we call d the largest spacing in the
array)Ir): di > A0/2 (35)
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Lo = ) (36)Ii + log(2d/AQ

X,1 = n,\,/2"rn. < N - -u log(2d/A,) (37)

Luc(\'.I)l/Iu for n > N - loo(2d/A, ) (38)
d L

wt,(A) = 2x'(n)/A for n < N - Lo log(2d/A) (:39)d __

i,,(A) = I for N--L-log(2d/A) < n < N---d log(A0/\) (40)

,,,,(A) = 0 otherwise. (41)

Practically. this implies that the filtering we apply to the Fourier coefficients ?(f) at
frequency ] of the signal r,, at the n"h lihydroplione is

SZ(.4(f) + J I(f),(f)e 2"ifm/C (42)
71

with x, as above, A,(f) = A./C if . < N - -L log(2d/A1 ), A4(f) = (2d/C Wn-MdLo

if N - -L- log(2d,/Al) _< AN-' log(2(f/C) , and 0 otherwise, while B,(f) = 1 if N -

d log(2df/C) < n < N- L log(, of/(') , and 0 otherwise, and 3 is the sine of the bearing
S angle being scanned.

As the simulations that we have implemented show, this method should prove very
Suseful in concentrating the energy of a signal spread over a wide band and thus enhancing

its detectability. Indeed, the method singles out the optimal set of time delays (defined by
the angle of peak gain) to use in adding up coherently the signals arriving at the different
elements of our array.

We have previously shown the benefits of an array in signal classification (see figures
13 and 14). In the next example we show how one can determine the direction of a broad
band signal, even when a stronger signal is present. In Figure 15 we show an example with
two sources, one at -450 and one at +30'. The array does an excellent job of locating the
direction. Knowledge of the direction is important for optimum utilization of the array for
classifying signals. Indeed, the method singles out the optimal set of time delays (defined by
the angle of peak gain) to use in adding up coherently the signals arriving at the different
elements of our array.

6. NONLINEAR TRACKING

In this case, we are assuming that a "parametrized" signal template time-series has been

identified. By "'parametrized," we meaini that this template, which we have as a model for
the signal that we are trying to detect and localize in the received time series, may depend
on several parameters such as target aspect, speed, range, etc. We also assume that, while
the dynamics of this template signal are not necessarily linear, they are not chaotic: in other
words, we can expect to estimate in a rol)ust fashion the values of the parameters on which
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it depends, and, indeed, locate the exact version of our signal within the received time series.
For convenience, let us group all our paranmeters into a "state" vector X, and assume that
we are looking for the signal _'(t; X) within the received time series r(t).

So far, we have not accounted for the (highly non-linear) propagation effects through
the ocean lens. For simplicity, we will assumne for now that tile parameter vector X consists
only of the coordinates of the source prodlcinig the tuie series. Our problem in this case is
to look for each of the n signals

.5"(1; X ) = '(.\, to; - t), ) S(t 0: X) (to (43)

within the corresponding signal r,,(t) received at the n1t hydrophone, where G is the Green's
function for the medium, and -V,, represents the coordinates of the nth array element. Rather
than try to detect S (and estimate its parameters X) based on a single "look." an approach
whose success is assured only when one assumes an unrealistically high signal-to-noise ratio,
we propose to combine several looks together in order to make our detection. In short, we
set out to 'track" S (and X) in order to determine if it is indeed there, i.e. for what value
of X , if any, can we identify our template within the received time series.

The optimal filtering solution to this problem is described by the formalism of the Zakai
equation ([61). The solution to this equation is essentially the (infinite-dimensional) non-
linear equivalent of the linear Kalmami filter. To set up the Zakai equation. and then try to find
its solution. one starts by describing the expected time evolution of the vector one is trying
to estimate, N in our case. One then describes the dependence of the data received, the rn's
in our case, on this state vector - that is achieved by our equation (43). once we can compute
the medium's Green's function. For simplicity, we shall assume very simple dynamics for
our variables, and proceed to write down directly the solution to the Zakai equation: first.,
we change the assumption about X a little, and assume that our state vector consists of the
coordinates of the source as well as its velocity vector, i.e. X (x(),2). X (3) V 1), t(2) V (3 ))

then we assume that the dynamics of the velocity vector have a deterministic part that
assumes that the velocity is piecewise constant, and a stochastic part that assumes that
the discrete velocity changes occur at Poisson-distributed times with rate y. This measn
that our source moves in straight line segments, changing its course at a sequence of times
{tl, t 2 , t 3 ... } such that the quantities t0,,2 - lt 3 - t2, ... are Poisson distributed with mean
1/yt, and such that the new velocities at each course change are distributed according to a
pre-specified density function, call it g. The formalism of the Zakai equation allows us to
determine the conditional density function p(t, Y given r,(r) for all r < t), the function of
(t, Y) which describes the likelihood that X at time t be close to the value Y, given all the
past received observations r,,(r).

Under these assumptions, we have obtained a recursive algorithm for updating p as the
data is received. Indeed, if the noise in the received signal is 0-mean additive Gaussina noise
with r.ni.s. level a', p call be cornputed usinig

p( t, r, v) = p( t o, x - (t - to) v, v)c(_ " E"o ,,. (.,,s-(t-.S)vi+2,,,(s) vS,,(s,x-(t-s)vv)+,] ds (44)
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] Kf ~to,.r-(tto) ', ') ~ -L~dl ~ IS" S,(7,x -(t_ r)u,V)2 +,2u,,(7) v~,(~-r)v.v)+p] ri-rd

where tt,,(s) = j03 /',(7)d7 is the suiim ol' all data recci ved at. thle n" element up to time .5.

k\ ,e set out to study the momencits of' p anic their evolution in time in ordIer to determine
the kind of localization one canl expect to achieve efficiently. The preliminary simulations wve
had conducted] started by assuminug a medi mni with given visco-elastic propagation properties,
then computing the associated Greei's function for a puire tone, thus enabling uIS to compute
thle templates S,- for anyI ni-i-a Coill 1ti ,urationm.

The first niew% aspect of the prioblem~ \%e. (lecided to Study wvas time robustness of this ap-
proach when one does not necessarily1 know thle exact paramneters governing thle propalgation
in the medium at hand. Indeed. one( cainiot. exp~ect to kiiow the complressional andl shear
velocity profiles wvithi all their fluctuatilonls tIi r-omigimolt thle medi umn, nor canl oiie expect to
Compute anl exact Green's fuiiction,. evein if tfime propagation p~arame~ters were known exactly.
III particular, startingr with a umniformi ) over a realistic domain for X, the first qunestion is
to determine how sooii the variaiice of' p. ixe. thme meaii square Uncertainty in the est iniate,

of N, would converge to anl accept ably small value. \Ve started b oii this for a pure
tone (the case of a linlear si l.InI a twxo-laver mcldi um allowing only compressional wave

p~ropagatioin. Thle discouragi ii g reslti Ii s t Iat, thme imiethod failIs if the relative d iscrelpaiic%
between the modeled veloci ty amid t lie- acttia I propagat ion speed is greater than O.-1/`( if the
relative difference bet weerm thle mmodch I amid actunal laver dopt 1i is greater than .1 '1 . or if tile
relative error in the density of thle ha If'-i iifi it~e layer is gre-ater than IWO'17 .Not on ly does the
secondl moment fail to converge, but, theC algor'ithumll actuall ends up -zeroinig)" p becausýe the
increasingly negative exponents 111 (4-I) impose a Uniform rapid decay rate onl the (lenilstv
function. InI essence, the "anmbligutv funiction" for this particular approach is too narrowvlv
supported, and this miodel is too Seiisitive to randomness in thle mediumll.

The conclusion is that for this approach to wvork, one must incorporate into one's vector
of "state variables" thle parameters that describe the medium1T. and one must incorporate the
effect of their fluctuations oii the signal as it propagates from the source to the receivers.
This is considerably more conmplica~ted than what we set out to study: such anl endeavor
would lie beyond the scope of this effort..
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Figure 1. Time traces of four of the signals used in this demonstration. Signal 3 is random
gaussian noise with the same spectrum as one of the other signals.
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Figure 2. Time traces of four of the signals used in this demonstration. Signal 7 is random

gaussian noise with the same spectrum as one of the other signals.
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Figure 5. The density, p(x, y), for a particular signal is shown in Figure 5. The density from
another sample of the signal is shown in 5c, and the density from a different signal
is shown in 5b. These latter two densities are examples of proposed candidates taken
from a library of possible densities.

I
I

I2



spectrum signal 4,6 Signal 4.4
le.1,0600

a ¶000. 1 b 2
10000.

1000-

1001 1I olio I .. ' ,
oI 1j o- .

0.1;1

500 1000 1500 2C00 250 *26- 200 300 400
frequency tine

Ssgnal 1 .5S 
sdgn

1 300-

1 E, 300- /- I,•+ -'fij , . .2 o

. I 100:

3 100 200 300 400 06 0.2 0.4 0.6 0.8 -1
time rela. amountII

I Figure 6. (a) is the power spectrum of the signal shown in 6b; (b) is the sum of signals 4 + 6
with the relative strength parameters a and b given in the text; (c) Different pair of signals
that was being compared with signals 4 + 6; (d) X2 is a figure of merit for how good the fit
is, smaller X2 being better. The horizontal axis is a relative amount of the two signals being
combined. The two curves that nearly touch are two samples of signals 4 + 6. The upper
curve is for signal 6 + another unshown signal, and the X2 for signals 1 + 5 would be off the

* graph.
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Figure 7. Figure 7a is the density, p(x, y), for S = .37S, + .63S 2 with S, and S 2 being two of the
signals described above. Figure 7b is the density constructed from A(,c) = 131(.37,C)A 2(.63K)
and would be identical to Figure 7a for an infinitely long time series. Figures 7c and 7d are
constructed similarly to Figure 7b, but the signal used for S, is incorrect.
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Figure 8. One-dimensional density for one of the signals with S,,um,(t) = S(t) + S(t + T) and
various time lags, T. The vertical axis is the density and the horizontal axis is the signal

amplitude.
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Figure 9. Same as Figure 8 for another signal.
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Figure 10. The signal has the same spectrum as the signal in Figure 9, but the Fourier phases were
randomized to produce a noise signal. The single figure on the last row is for S(t) = cos(t).
The densities for cos(t) are independent of the time lag, T. The other densities have very
little dependence on T.
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Figure 11. The solid line is the density constructed from S(t) S= S(t) + S 2 (t) where S, and

S2 are two of our standard signals. The dashed line is the fit obtained by calculating the

convolution of the densities for S1 and S2. The difference is due to the limited length of theI signal.
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Figure 13. The signal is S(t) = Sl(t) + 10S 2 (t) and Figure 13a shows the density for S. Figure

13b is the density obtained from A K= A, (7) A2 K. To obtain Figure 13c, we construct

a trial A from a signal other than S, and then Fourier transform it. Figure 13d is similar
except that a signal other than S2 is used. We see that with a signal this weak we can not
identify it with a simple receiver and a single time lag, although the strong signal is readily
identifiable.
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I Figure 14. Two signals were directed at an array with an angle of 450 between them. Signal 1
had an amplitude 10 times signal 2, and the array had 100 elements. The array was pointed
at the weak signal. The two-dimensional density of the signal is shown in Figure 14b. Two
sample hypotheses are shown in Figures 2 and 3. These two signals happen to have identical
power spectra. Clearly Figure 14c can be easily selected. Without the array and with only
one time lag used, we could not have identified the correct component.
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Figure 15. Two signals were simulated, one at -450 and one at +300 with respect to the array
orientation. The phase of the array was varied and the return is plotted versus the sin of
the direction angle. The source directions are clearly picked out.
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